
PHYS 1902 Assignment 2

Due: Monday, March 26, 2018

AGAIN, DON’T PANIC

Once again, this assignment’s bark is worse than its bite. Please ask for help if you need it. And

please don’t delay trying the assignment, term is ending faster than it seems!

20 marks
1. The Galactic Mass Fraction of Interstellar Dust: Interstellar gas and dust mix to

form giant clouds and complexes in the galaxy. Dust affects the way wee see the

galaxy because of general obscuration (interstellar extinction) and by selective blue

light extinction (interstellar reddening); yet dust makes up a tiny fraction of the total

mass in the galaxy. We can estimate the mass fraction of dust at our location in the

galaxy using some basic inputs.

(a) Let’s approximate dust grains as spheres, each with a radius of R = 10−5 cm.

Each grain of dust presents a cross-sectional shadow of πR2. Recall that a pho-

ton’s mean-free-path, l, is the typical distance a photon flies before bumping

into matter. If the number density of dust grains (number of grains per cm3) is

n, the mean-free-path length relationship to the cross-sectional shadow is:

l =
1

nπR2
(1)

Given that interstellar extinction observations indicate that l = 3 × 103 light-

years, calculate the number density, n, of dust grains in units of cm−3. How

many dust grains would you expect to find in a volume equal to the Rogers

Centre in Toronto (a cube about 100 metres in all directions)?

(b) Assuming that dust grains have a typical matter density of about 2 gm/cm3, es-

timate the mass, mgrain, of a dust grain. A volume V = 300 (lty)3 in the galaxy

typically contains one solar mass of stars. What is the mass of all the dust in

this volume, Mdust = nVmgrain? What is the mass fraction of dust compared to

stars at our position in the galaxy?

The interstellar material with its interactions with embedded stars and dilute

radiation fields produces extremely rarefied matter that is far from thermody-

namic equilibrium. The birth and death of stars intimately link to the inter-

stellar material as old stars fill space with heavy elements and new stars form

when the gas and dust become dense and cold enough to gravitationally col-

lapse. Gravity and the second law of thermodynamics shape the material be-

tween the stars. The enriched material forms a new generation of stars and
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planets—and new life who asks where it comes from. As we look out into the

Universe from our small stage, the interstellar material reminds us that we are

all made of star dust, fashioned by gravity and thermodynamics.

20 marks
2. White Dwarf Stars and the Chandrasekhar Mass Limit: In the last assignment we

discussed pressure as force per unit area. Let’s revisit that idea from the microscopic

perspective. Imagine a cloud of small pellets all moving in random directions in a

box. Now imagine one of the walls of the box as pellets bounce against it. Over

the course of time t, as the pellets move to the wall of area A, they sweep out a

volume of volume = Avt, where v is the velocity of the pellets heading toward the

wall. The pellets reflecting off the wall generates pressure. The force of the reflection

comes from the change in momentum (mass times velocity p = mPv, mP is the pel-

let’s mass) of each pellet. In time t, half of the pellets are moving towards the wall

and the other half are moving away after reflection and the change in momentum

is twice p since the velocity switches sign (the collision with the wall is perfectly

elastic, the particles don’t lose energy in the collision). If the number of particles per

unity volume is n, then the pressure must be:

P = [number of particles per unit volume]×[volume swept out by particles head-

ing towards and bouncing off the wall]×[change in momentum per unit time]÷[the

area of the wall] = (n)(Avt/2)(2p/t)/A = nvp.

In three dimensions, we would adjust this result by a factor of 3, but we won’t

worry about that here. We have the formula for pressure in terms of microscopic

quantitites: P = nvp, where p is the particle momentum, p = mv.

Now imagine an electron gas with number density ne. This means that on average,

the distance between electrons is ∆x = (1/ne)
1/3. Let us suppose that the electron

gas is so dense that it’s degenerate meaning that the rules of quantum mechanics

become important. In particular, the gas obeys Pauli’s exclusion principle, which

prevents two fermions (electrons are fermions) from occupying the same quantum

state, and Heisenberg’s uncertainty principle, which tells us that it is impossible to

define the position and the momentum of a particle through their product to an accu-

racy better than Planck’s constant: (∆x)(∆p) > h. For our degenerate electron gas,

these principles mean that p = h/x = hn1/3
e . If the electrons in the gas are moving

much less than the speed of light, then v = p/me. These conditions are met inside

a typical white dwarf star—the ions, which are the nuclei of the atoms that make

up the white dwarf, are relatively stationary, but the electrons form a degenerate gas
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inside the solid body. Unlike a main sequence star, in which pressure generated

from thermal effects prevents gravitational collapse, it’s the quantum mechanical

degeneracy pressure of the electron gas that supports a white dwarf.

(a) Based the relationship Pe = nevp = ne p2/me, and p = hn1/3
e , show that the elec-

tron degeneracy pressure is Pe = h2n5/3
e /me. In reality, this result is modified

by a factor of 0.0485—not too bad for our rough estimate!

(b) Recall that the atomic number, Z, counts the number of protons in the nucleus

of the atom and that the atomic weight, A, counts both the number of protons

and the number of neutrons. For example carbon has atomic number 6, and

atomic weight 12; oxygen has atomic number 8, and atomic weight 16. The

white dwarf has overall charge neutrality meaning that the ions of atomic num-

ber Z that make up the star have the number density relationship Zn+ = ne,

where n+ is the ion number density. A white dwarf is typically composed of

carbon-oxygen and so the ratio of the atomic number to the atomic weight,

Z/A, is about 0.5. Since the proton and the neutron have similar mass, we

will approximate the neutron mass with the proton mass, mp. The proton is

significantly more massive than the electron, so the density of the white dwarf

is approximately ρ = Ampn+ and so ne = Zρ/(Amp). Show that we can write

the electron degeneracy pressure as

Pe =
h2

me

(

Z

A

)5/3
ρ5/3

m5/3
p

(2)

(c) Recall from the first assignment that the central pressure required to hold up a

self-gravitating sphere of mass M and radius R is approximately Pc = GM2/R4.

If we take the density to be ρ = M/R3 in our expression for Pe, and if we set

Pe = Pc, show that the mass-radius relationship of a white dwarf is:

R =
h2

Gmem5/3
p

(

Z

A

)5/3

M−1/3 (3)

The actual relationship is modified by a factor of 0.114—again, not bad for our

rough calculation. Notice that the radius of a white dwarf shrinks as the cube

of the mass. Unlike a main sequence star, the more massive a white dwarf

becomes, the smaller its radius. Using the 0.114 correction factor, and setting

Z/A = 0.5, calculate the radius of a white dwarf that has the mass of the Sun;

Msun = 1.99 × 1033 gm, G = 6.67× 10−8 gm−1 cm3 s−2, h = 6.63 × 10−27 erg s,

me = 9.11 × 10−28 gm, mp = 1.67 × 10−24 gm.
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White dwarfs are like stellar embers, slowly cooling as they reach thermal equi-

librium with the Universe. Since the degeneracy pressure holds up the white

dwarf, it can cool without shrinking. Eventually, the white dwarf will end up

with crystallized ions and a degenerate electron gas moving around inside the

lattice structure.

(d) So far we have been dealing with a white dwarf with a degenerate electron gas

in which the electrons are whizzing around at speeds much less than the speed

of light. As we increase the mass of a white dwarf, the radius shrinks and

eventually the degenerate electron gas becomes relativistic, that is, the electrons

move around at near light speed, c. Under such extreme conditions, we need

to modify our approach. The pressure for the relativistic degenerate electron

gas is,

Pe =
hc

m4/3
p

(

Z

A

)4/3

ρ
4/3. (4)

If we again use ρ = M/R3, and we set Pe = Pc, show that the radius R drops

out of the calculation and we end up with the result,

M∗ =

(

Z

A

)2
(

hc

Gm2
p

)3/2

mp. (5)

In actuality M∗ is modified by a factor of 0.2. This result is the Chandrasekhar

mass limit of a white dwarf star, named for Subrahmanyan Chandrasekhar, the

Nobel prize winning Indian-American physicist. The Chandrasekhar limit is

1.4 solar masses (you can verify the result numerically, if you’d like). Above

the Chandrasekhar mass, even the quantum mechanical degeneracy pressure

of the electron gas cannot stop the white dwarf from gravitationally collapsing.

If the white dwarf has a mass greater than 1.4 solar masses, the white dwarf

will “drive” the electrons into the protons to form a neutron star. If the neutron

star exceeds about three solar masses, even the quantum mechanical properties

of the neutron star cannot halt the gravitational collapse—the stellar remnant

will collapse forever, forming a black hole—the topic of our next question.

15 marks

3. Hawking’s Evaporating Black Holes, and the Scale of Quantum Gravity: The es-

cape velocity of a body is the minimum speed required to leave its gravitational

clutch. The formula for the escape velocity is vesc =
√

2GM/r, where r is the radius

of the body, and M is its mass.

(a) Suppose the gravitation field of a body with mass M is so strong that you

4

https://en.wikipedia.org/wiki/Subrahmanyan_Chandrasekhar


would need to reach the speed of light, c, to escape. The radius of this object is

called the Schwarzschild radius, named after Karl Schwarzschild, the physicist

who provided the first exact solution to Einstein’s field equations of general

relativity—and he did it while serving in the German army on the Russian front

during the first world war. Using the escape velocity formula above, show that

RSch = 2GM/c2. What is the Schwarzschild radius of a 3 solar mass black hole

(3Msun = 5.97× 1033 gm, G = 6.67× 10−8 gm−1 cm3 s−2, c = 3.00× 1010 cm/s

)?

Think about our collapsing star with a mass larger than three solar masses. As

we learned in the last question, quantum mechanical degeneracy pressure is

powerless to stop the collapse. Once the radius of the collapsing star reaches

the Schwarzschild radius, light itself cannot escape. But the star continues to col-

lapse forever. In truth, the situation is a bit more complicated. Einstein’s the-

ory of General Relativity becomes important for such strong gravity fields and

since spacetime becomes highly distorted, it doesn’t make much sense to talk

about a “radius” as such. Nevertheless, we can think about the point where an

outwardly traveling photon could just barely escape—this is the event horizon.

If we imagine tracing out these barely-escape points by going around the col-

lapsing star, we will find that the circumference is 2πRSch and that the surface

area is 4πR2
Sch = 16πG2M2/c4. That is, we can interpret the Schwarzschild ra-

dius as the “radius” of the black hole. We will not consider rotation, as rotating

black holes make the situation even more complicated.

(b) In part (a), notice that the surface area of the event horizon, A = 16πG2M2/c4,

depends on the square of the mass. This observation lead Stephen Hawking

to suppose that in any natural process, the surface area of the event horizon

must always increase, or at best, stay the same. In 1972, Jacob Bekenstein no-

ticed that the statement looks very much like a thermodynamic law—it looks

a bit like the second law of thermodynamics except instead of entropy increas-

ing, it’s the surface area of the event horizon. Jacob Bekenstein made the bold

suggestion that the surface area of the event horizon is a measure of the black

hole’s entropy. But if a black hole behaves like a thermodynamic body, what

would it mean for the black hole to have temperature? Thermal bodies emit ra-

diation, so how can a black hole have thermal properties if nothing can escape?

In quantum mechanics the vacuum is not a quiet place. Virtual particles of all

types are constantly coming into “existence” and annihilating. Since the un-

certainty principle states that energy differences and time differences have the
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Figure 1: Hawking radiation near the event horizon of a black hole. The creation and
annihilation of virtual particles usually ends with complete destruction unless the tidal
forces cause one of the particles to fall into the black hole. In such cases, quantum me-
chanics allows the other particle to escape by “tunneling”. The radiating particle reduces
the mass of the black hole. Image Credit: Northern Arizona University

relationship (∆E)(∆t) > h, particle-antiparticle states can pop out of the vac-

uum with energy ∆E = mc2 as long as it returns the energy to the Universe

inside the time ∆t ≈ h/∆E. We have lots of evidence for these vacuum pro-

cesses in laboratory experiments. Stephen Hawking wondered about particle-

antiparticle states emerging near the event horizon of a black hole. Normally,

the particle-antiparticle state would quickly return the energy back to the Uni-

verse through annihilation, but suppose that one of the particles falls into the

black hole before it gets a chance to annihilate with its partner. See figure 1.

In that case, the event horizon will become a source of radiation. This parti-

cle emission from the event horizon, which carries away energy, steals mass

from the black hole by the relationship E = mc2. Stephen Hawking realized

that black holes evaporate by thermal emission—a process we know today as

Hawking radiation. Quantum mechanical processes1 shrink the surface area of

the event horizon and evaporate the black hole’s mass!

Suppose that virtual particle-antiparticle “energy borrowing” from the uncer-

tainty principle is governed by ∆E∆t = h/(4π). Let us further suppose that

1For stellar mass black holes, the evaporation process proceeds extremely slowly, taking many of orders
of magnitude longer than the current age of the Universe for complete evaporation.
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if the virtual pair separates by half the circumference of the event horizon,

c∆t/2 = 2πGM/c2, then one of the pair has a reasonable chance of falling

into the black hole while the other one escapes. If the energy of the escaping

particle has a thermal distribution, ∆E = kT, where k is Boltzmann’s constant,

show that the temperature of the black hole is,

T =
hc3

16π2kGM
. (6)

This expression is Stephen Hawking’s famous black hole radiation result. The

event horizon is a source of radiation, and thus black holes evaporate with a

temperature inversely proportional to the black hole’s mass—small black holes

are hotter than large ones. Compute the temperature of a 3 solar mass black

hole, (3Msun = 5.97× 1033 gm, G = 6.67× 10−8 gm−1 cm3 s−2, h = 6.63× 10−27

erg s, c = 3.00× 1010 cm/s, k = 1.38× 10−16 erg/K).

Given the violent stages of the early universe, it is possible that micro black

holes, with masses of a typical asteroid or terrestrial mountain (1016 gm), might

have formed at that epoch. What would be the temperature of such a low

mass black hole? These primordial micro black holes would have a Hawking

radiation lifetime of about the current age of the Universe. Some astrophysi-

cists have suggested that micro black holes could form the dark matter and

we would be able to detect them from their Hawking radiation as they evap-

orate. The Fermi Gamma-ray Space Telescope is currently looking for gamma-

ray burst signatures from evaporating primordial micro black holes.

(c) Imagine if we make the black hole quantum mechanically small so that twice

its Compton wavelength, 2h/(mc), is equal to its Schwarzchild radius, 2Gm/c2.

Show that m = (hc/G)1/2 . This mass, mPl, is called the Planck mass and

on this scale gravity and quantum mechanics are both equally relevant. We

don’t know the laws of physics in this regime—it is the scale of quantum grav-

ity. Compute the Planck mass in grams (G = 6.67 × 10−8 gm−1 cm3 s−2,

h = 6.63 × 10−27 erg s, c = 3.00 × 1010 cm/s) and compare it to the mass of

the recently discovered Higgs Boson, MHiggs = 2.2 × 10−22 gm. What does the

scale difference tell you about how much more powerful our particle accelera-

tors need to become before we can directly explore this physics?

In this course, we have seen how astrophysical processes involve the competi-

tion between gravitation and the second law of thermodynamics. A black hole

is the most pure gravitational stellar end state, but as we have seen from Hawk-

ing radiation, quantum mechanics implies that even black holes are thermody-
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namic bodies. What is the ultimate end state for matter? If grand unification

ideas in particle physics are correct, all atomic nuclei are unstable, eventu-

ally decaying into photons and leptons. If those ideas are correct, even white

dwarfs and neutron stars will decay away. The observation that the Universe’s

expansion is accelerating suggests that the second law of thermodynamics will

win out. The Universe will expand forever, eventually reaching thermody-

namic equilibrium with no black holes, no stars, no galaxies, no planets—all

material entities being just way-stations on Nature’s journey of turning all mat-

ter into photons and leptons.

55 marks
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